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ABSTRACT 

Fixtures are used to locate, hold and support workpieces during the operation. An 

accuracy of the workpiece is decided by a relative location and orientation of the workpiece 

coordinate system with respect to that of the fixture. The impact of surface variability at 

contact points on the variability of workpiece location and orientation will be analyzed. 

Methods of estimating moments will be implemented to evaluate the distribution of the 

workpiece variability. When surface errors exist and the workpiece is fixtured for 

machining, inconsistency in feature location and orientation is expected. Hence, in order to 

derive efficient tolerance allocation for the feature, the fixturing error must be taken into 

account. A circular tolerance region based on a bivariate normal distribution will be used to 

obtain tolerance zones of a desired probability of rejection. By establishing tolerance 

efficiently, we can reduce a number of rejected parts, leading to some reduction in production 

cost and time. 
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CHAPTER 1. GENERAL INTRODUCTION 

INTRODUCTION 

In a competitive market-driven world, manufacturing companies are in search of 

technologies that can improve product quality, which will in turn give them the 

competitiveness in the market and customer satisfaction. Establishing an efficient process 

plan is one way to attain such goals. However, to do so requires collaboration among many 

departments especially from the design and manufacturing divisions. For example, when a 

company agrees to take on a new product, it would need a designer to develop a physical 

model that meets the product's functional requirements. At this stage, the designer may team 

up with manufacturing engineers to discuss ways of producing the part. It is clear that 

process planning is the vital link between the product design and manufacturing. An 

important aspect of the process plan is the fixture design. Fixturing analysis is a critical part 

of process planning as it contributes up to 10-20% on average of the total production cost [I]. 

As a result, the interaction between the fixture and the workpiece should be considered from 

the design stage so that the analysis of fixture can be conducted as the design progresses. 

Fixtures are used to locate, hold and support workpieces during manufacturing 

operations. The relative position and orientation of a workpiece coordinate system with 

respect to a fixture coordinate system are key to determine geometrical and dimensional 

accuracy of final products. In machining, there are many factors threatening the accuracy of 

the workpiece position while it is fixtured. Such factors include machine vibration, fixturing 

error, workpiece or fixture deformation, cutting force, and surface error at contact points. 

Research has been widely carried out in this area; however, only a few researchers have 
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taken into account the effect of surface errors upon the efficiency of workpiece positioning. 

This thesis proposes a new approach of fixture analysis by integrating the impact of 

workpiece surface error into feature tolerancing. Our focus is on the deviation prior to 

machining which is caused by the surface variability at the contact points between workpiece 

and a fixture. Typically, quality of the surface error is dependent on the preceding process 

and the process parameters, as shown in Figure I. 
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Figure 1. Tolerances and surface roughness obtained in various manufacturing processes. These 
tolerances apply to 25 mm workpiece dimension. Source: S. Kalpakjian [2], 

Surface variability, in most occasions, is inevitable. With the existence of the 

variability, the workpiece is prone to displace from its nominal location and orientation. If 
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the preceding process does not provide a surface with acceptable surface errors, rough 

machining of the contact areas is advised. To minimize the effect of surface errors, datum 

targets are established to improve the repeatability of workpiece location and orientation. 

Datum targets are expected contact points (or areas), and are typically selected such that the 

surface irregularities are minimal. They are more functional than the use of entire surfaces 

for the establishment of datums [3], However, the use of datum targets will not completely 

eliminate the effect of surface errors on workpiece locating, therefore, it will not guarantee 

successful mapping of the workpiece coordinate system with that of the fixture. It is thus 

suggested to understand the impact of the variability on a resultant workpiece quality. The 

allowable surface error or variability, may not severely affect the production process as a 

whole. However, it could introduce significant errors during processing. 

It is therefore favorable if the process planner and the fixture designer have a better 

perception on the behavior, with regard to the surface error at contact points, of the 

workpiece while it is held in a fixture. Fixture handbooks exist to give qualitative advice to 

these designers and planners to design a functional fixture [4]. The method developed in this 

work will provide the planners and designers with quantitative information about the effect 

of the fixture design decision or workpiece errors. Based on this information, the fixture 

could be redesigned in a way that it will repeatabily position the workpiece closest to its 

theoretical location and orientation. Contact points could be relocated to areas of the 

workpiece offering the most accurate workpiece positioning. In addition, understanding how 

the variable behavior of the workpiece contributes to feature tolerancing is as important. 

This information could be used to specify the tolerances needed for the preceding process, 

and to define reasonable tolerances of descendant features. Features will never be efficiently 
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toleranced unless all factors listed previously are accounted for. The objective of this thesis 

is to analyze the impact of workpiece surface errors on feature tolerancing. The 3-2-1 

fixturing method, which is composed of three mutually perpendicular references, is used. 

These ideal planes are constructed from six contact points between the workpiece and 

locators; for example, three for the primary datum plane, two for the secondary datum plane, 

and one for the tertiary datum plane. The workpiece is to make contact with all the locators 

in the primary datum plane first, followed by the locators in the secondary and then the 

tertiary datum plane. 

Tolerances are thus established to permit parts with acceptable errors in dimension 

and geometry to be accepted, resulting in reduction in production cost and time. Many 

tolerancing methods have been proposed to control variability in manufacturing and some of 

them are industry standards. Statistical tolerancing is the one, which is widely used because 

of its advantages over conventional methods as follows [5]; 

1. Conventional methods treat the tolerances as limits on the parameters of a parametric 
model. However, as geometric tolerancing represented by tolerance zones instead of 
limits is more widely accepted, conventional methods become more awkward. 

2. In assembly, tolerances built up from either worst-case methods or root-sum-squares 
method are not accurate. Worst-case methods give results that are overly pessimistic, 
while the root-sum-squares method gives results that are too optimistic. 

As a result, probabilistic models better represent the variation in manufacturing 

processes, and bridge the gap between this variation and the geometric tolerancing. The 

distribution which best describes the variability in manufacturing is controversial. Despite 

some opposition [6, 7], many researchers [8-10] use a normal or Gaussian distribution to 

represent such variability. If the event of interest randomly occurs and the sample size is 



www.manaraa.com

5 

large enough, a normal distribution seems to be an excellent candidate. Even though the 

sample is not random, we can still theoretically assume a normal distribution with a large 

sample size by following the central limit theorem. Likewise, a normal distribution is 

adopted in the first part of this thesis to denote the variable nature of surface errors. Such 

errors are known to introduce variability in workpiece positioning, consequently in feature 

dimension and geometry, for which a normal distribution is proven to be a reasonable 

estimate. 

There are several publications found relevant to fixturing error in manufacturing 

processes. Only a few researchers investigated the displacement of a workpiece's location 

and orientation in a fixture caused by surface errors at contact points, which are discussed in 

the next section. 

LITERATURE REVIEW 

Salisbury and Peters [11] have given closer attention at the impact of surface errors 

on the deviation of workpiece location and orientation. They developed a model to predict 

the deviation of a prismatic workpiece located by 3-2-1 fixturing method. The workpiece 

came into contact with the fixture through a virtual step-wise process. The workpiece was 

then modeled as making contact with one locator at a time and the process continued until the 

workpiece touched all six locators. This model was developed under a worst-case scenario. 

Given the surface errors at contact points, the location of a target point and orientation of the 

workpiece can be obtained. However, the result indicated that the largest deviation does not 

necessarily come from the largest errors at the contact points. 
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Later, the mathematical model of this purpose for a cylindrical workpiece was 

developed by Sangnui and Peters [12]. An algorithm was created in order to study a 

relationship between the workpiece and fixture coordinate systems. The fixture was 

composed of five spherical-tipped locators, used to hold and restrain workpiece movements. 

The workpiece and fixture coordinate systems were defined separately. The constraints were 

established to assure the contact between the workpiece and these locators. To find the 

position and orientation of the cylinder that satisfy the constraints, the cylinder was 

repeatedly virtually rotate around its origin before being translated by a certain distance. The 

mapping between both coordinate systems can be derived through a transformation of the 

cylinder. Experiments were conducted to determine validity of the model and repeatability 

of the equipment. 

The previous work assumed a worst-case scenario and disregarded the probabilistic 

concept. To fill this void, the probabilistic nature of the surface errors will be considered in 

the first part of this thesis. A prismatic workpiece is located by 3-2-1 fixturing method and 

its location and orientation are also analyzed using step-wise approach. The objective of this 

work is to acquire the distribution of a target point location, as well as the distribution of the 

workpiece orientation. Methods of estimating moments, linearization by using Taylor series 

[5,13] and Monte Carlo simulation, will be performed and results from both methods will be 

compared. Because of an inconsistency in location and orientation of the workpiece 

coordinate system with respect to the fixture coordinate system, variability in feature position 

and orientation is expected. In the second part, the effect of the workpiece displacement on 

tolerance allocation of features of subsequent machining will be analyzed. 
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DISSERTATION ORGANIZATION 

This dissertation contains two papers to be submitted to journals, which appear in 

separate chapters. In Chapter 2, the first paper; Prediction of Fixtured Workpiece Location 

when there are Variable Surface Errors at the Fixturing Points, discusses the effect of 

distributions of surface errors at contact points on workpiece location and orientation. 

Applications of the model developed in the first paper on tolerance allocation of machined 

features are illustrated in Chapter 3. The chapter is dedicated to the second paper; 

Determination ofAppropriate Tolerances of Machine Features when there are Surface 

Errors at the Fixturing Points. General introduction and conclusion are in Chapter 1 and 4, 

respectively. 
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CHAPTER 2. PREDICTION OF FIXTURED 
WORKPIECE LOCATION WHEN THERE ARE VARIABLE 

SURFACE ERRORS AT THE FIXTURING POINTS 

A paper to be submitted to the Journal of Manufacturing Science and Engineering 

Supapan Sangnui and Frank E. Peters 

ABSTRACT 

In this paper, it is assumed that surface variability is normally distributed. Similar to 

the previous work by Salisbury and Peters [1], a prismatic workpiece is located by 

3-2-1 fixturing method and its location and orientation are also analyzed using step-wise 

approach. However, the steps are modified such that they become more systematic and 

computationally easier to handle. The objective of this work is to acquire a distribution of a 

target point location, as well as that of the workpiece orientation. This is not straightforward, 

since the response function is non-linear and derived through a set of complicated equations. 

Two methods of estimating moments, linearization by using Taylor series and Monte Carlo 

simulation, will be performed and the results from both methods will be compared. 
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LIST OF SYMBOLS 

di surface error at i'h locator 
Dj, D, distance that the workpiece translates to make contact with the secondary 

and tertiary planes, respectively 
ls, I, distance from the origin to the workpiece secondary and tertiary planes, 

respectively 
N jV, , N, initial normal vector of the primary, secondary and tertiary planes, 

respectively 
N', jv;, N', normal vector of the primary, secondary, and tertiary planes, 

respectively, after transformation due to variability in the primary plane 
yV*, M? normal vector of the secondary and tertiary planes, respectively, after 

transformation due to variability in the secondary plane 
5 vector to the nominal target point on the workpiece 

» °Pr vector to the target point after translation and rotation in the primary 
plane, respectively 

, 5sr vector to the target point after translation and rotation in the secondary 
plane, respectively 

o, vector to the target point after translation in the tertiary plane 

Pi point that the nominal workpiece makes contact with i'h locator 
Pid point that the workpiece makes contact with i'h locator (including surface 

error), with respect to the fixture coordinate system 
Pift expected points that the workpiece makes contact with fh locator 

(including mean of surface error), with respect to the fixture coordinate 
system 

Tp, Ts transformation matrix used to rotate the workpiece to make contact with 
the primary and secondary plane respectively 

Up, us axis that the workpiece rotates about to make contact with the primary 
and secondary plane respectively 

Bp, 9S angle that the workpiece rotates to make contact with the primary and 
secondary plane respectively 

/j, mean of surface error at fh locator 
of variance of surface error at fH locator 
Mv set of 
ôn set of di_..d„ 
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INTRODUCTION 

Fixtures are used to properly locate and orient a workpiece with respect to a machine 

tool. Since an accuracy of the workpiece is mainly determined through the relative location 

and orientation of the workpiece to the tool, fixtures are thus a critical part of a 

manufacturing system. There are several variables, which will cause the workpiece to 

deviate from the desired position, and the fixture is responsible for minimizing or controlling 

their effect. Such variables include cutting and clamping force, workpiece deflection, fixture 

set-up error, and workpiece surface error at the locating points. A typical 3-2-1 fixturing 

method is composed of the primary, secondary and tertiary datum planes. Theoretically, the 

contact is to take place at the nominal contact locations. However, no matter what 

manufacturing process is used to create the initial workpiece, surface irregularities at the 

contact locations are inevitable, resulting in some discrepancy between the nominal and 

actual contact points. Given a distribution of the surface errors at the contact locations, 

statistics allows us to derive variability of the final position and orientation of the workpiece. 

This paper will develop a method to calculate the influence of variable surface errors 

at the locating points on the accuracy of the workpiece. By utilizing the information obtained 

from this method, a designer can select appropriate tolerances required for the initial 

workpiece and can predict the variation of subsequent processes. Ultimately, the fixture can 

be designed to reduce the effect of inevitably erratic workpiece locating. 
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LITERATURE REVIEW 

Researchers working in the fixturing area have developed algorithms that provide 

complete constraint of the workpiece [2-8], determined sufficient support and performance of 

the fixture [9-13] and accessibility[14]. Less focus has been placed on determining the initial 

displacement of the workpiece in the fixture. 

Rong and Bai [13] analyzed a dependent relationship of operational dimensions to 

estimate machining errors in terms of linear and angular dimensions of the workpiece. Based 

on an analysis of machining processes, machining errors were divided into deterministic and 

random components. The deterministic machining errors are caused by locating errors of the 

fixture, position errors of the fixture, locating component and datum variation of the 

workpiece. The authors determined the effect of random errors caused by clamping 

deformation, cutting forces and thermal deformation. 

Cai et al. [3] proposed a method to conduct robust fixture design to minimize the 

workpiece positional errors as a result of workpiece surface and fixture set-up errors. It was 

shown that when the rank of the Jacobian matrix of the constraint equations equaled the 

degrees of freedom of the workpiece, the deterministic locating condition would be achieved. 

Choudhuri and De Meter [15] developed a method for modeling and analyzing the 

impact of a locator tolerance scheme on the potential datum related, geometric errors of 

linear, machined features. This study was limited to profile and dimensional tolerances 

applied to spherical tip locators in contact with planar workpiece. The results reveal the 

linear relationship between locator tolerance size and resultant datum related geometric error. 

The study suggested the use of larger locator radii in order to minimize the impact of the 

contact region deformation on the workpiece displacement during clamping. They also 
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found that datum related geometric error due to locator variability was sensitive to the source 

of locator variability but not to the locator radius. 

Salisbury and Peters [1] presented a model to predict a deviation of a prismatic 

workpiece located by 3-2-1 fixturing method. The workpiece came into contact with the 

fixture through a virtual step-wise process. The workpiece was then modeled as if it makes 

contact with one locator at a time and the process continued until the workpiece touched all 

six locators. Note that, this model was developed under a static case scenario. Given a 

constant value of surface errors at the contact points, the location of a target point on the 

workpiece and the orientation of the workpiece could be obtained. The results indicated that 

the largest deviation did not necessarily came from the largest errors at the contact points. 

Later, the mathematical model of the same purpose for a cylindrical workpiece was 

established by Sangnui and Peters [16]. An algorithm was created to study a relationship 

between a workpiece and fixture coordinate systems, which was influenced by surface 

variability at contact points. The fixture was composed of five spherical-tipped locators, 

used to hold and restrain workpiece movements. The constraints were established to assure 

the contact between the workpiece and these locators. The workpiece and fixture coordinate 

systems were defined separately. The cylinder was assumed to rotate around its origin and 

then translated a certain distance to contact all locators. The mapping between both 

coordinate systems could be derived through the transformation of the cylinder. Experiments 

were conducted to determine the validity of the model, and the repeatability of the 

equipment. 
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METHODOLOGY 

The previous work assumed a worst-case scenario and disregarded the probabilistic 

concept. In the current work, the probabilistic nature of the surface errors will be considered. 

The purpose of the algorithm presented in this section is to acquire the position and 

orientation of a workpiece under the influence of surface errors after the workpiece has made 

contact with each datum plane. A method to determine the variable location and orientation 

of a prismatic workpiece, which is held by the 3-2-1 fixturing method is developed. To 

assure repeatability of the workpiece location and orientation, the workpiece is required to 

initially make contact with 3 datum targets in the primary plane (points 1-3), followed by 2 

datum targets in the secondary plane (points 4-5) and finally, the last datum target in the 

tertiary plane (point 6), see Figure I. 

tertiary plane 

z 

Figure I. Locating planes and datum targets in 3-2-1 fixture. 
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ASSUMPTIONS 

Several assumptions regarding the fixture and the surface error model were used and 

are shown below. 

1. A workpiece is considered a rigid body. Deformation of the workpiece during 
transformation is not allowed. 

2. Errors at contact points are assumed to be normally distributed with mean n and 
variance a2, orN 

3. The errors are measured perpendicularly to the datum planes. The determination of 
the surface error sign is shown in Figure 2. 

GEOMETRIC ANALYSIS 

In this paper, the workpiece is virtually brought into contact with the fixture by using 

a step-wise process, simplified from that developed by Salisbury and Peters [1], An 

algorithm was established to find the final orientation and location of the workpiece as 

affected by the surface errors. Workpiece orientation is represented by two vectors: normal 

nominal workpiece 

dj (negative) 

d; (positive). 

Figure 2. Surface error, its measurement and the relationship between P, and P , j .  



www.manaraa.com

16 

vectors of the workpiece's primary and secondary planes. A target point, which signifies the 

workpiece location, could be any crucial point in which we desire to know the variability of 

its location after fixturing. The target point could be the reference point of a feature to be 

produced. Throughout this paper, any reference to the primary, secondary and tertiary planes 

will be referred to as those of the workpiece, unless otherwise stated. The details of the 

algorithm are described in Appendix 1. Note that, the workpiece movements used here are 

not physical but simulated. However, the result of these simulated moves is the same as 

actually occurs. 

STATISTICAL ANALYSIS 

The model in Appendix A was developed to acquire the location of the target point 

and orientation of the workpiece as a result of surface errors at contact points. Earlier work 

on this subject only considered a static amount of error, typically the worst-case scenarios. 

To be more realistic, variable nature of the surface errors will be taken into account here. 

Such variability is believed to be influential on the location and orientation of the fixtured 

workpiece. This section will consider the integration of variable error into the model 

described in the appendix. To evaluate how the variability of the surface errors reflects on 

that of the workpiece, multivariate and mathematical statistical methods are used. First of 

all, random numbers denoting surface errors at the locators are generated based on the given 

distributions. In this paper, a case is presented to use normal distributions. 

The mathematical expectation of the distribution of a random variable is called the 

moment of a random variable. The r'h moment about the origin of a random variable X when 

y(x) is continuous is 
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Mr = \xry(x)dx (1) 

where n\ is the mean of the distribution of X, which can be simply denoted by fi. The other 

special moment used to describe the shape of the distribution of a random variable is the r'h 

moment about the mean. 

Mr = - vY y(.x)dx (2) 

where is the variance of the distribution of X  denoted by c f .  

If closed forms of the equations are not available, or the response function y(x) is too 

complicated to solve, methods of estimating moments [17-20] can be used to lessen the 

difficulties in computation. In this paper, the Taylor series approximations and Monte Carlo 

simulations were implemented and the results from both methods were compared. Using the 

Taylor series approximation, the downside is the complication of the partial derivatives of the 

function, which may require some nontrivial algebraic manipulation [20]. Alternatively, 

Monte Carlo simulation is simpler and more popular for nonlinear statistical analysis, but 

requires very large samples with low variance in order to obtain accurate estimates of the 

moments [17, 20, 21]. 

APPROXIMATION BY TAYLOR SERIES 

The surface errors at the locators d, are assumed to be normally distributed, with a 

mean of //, and a variance of erf, or dr-N(Mi> cr?) for / =1,2,..6. According to the algorithm 

discussed in Appendix A, the final location and orientation of the workpiece in a fixture are 

nonlinear functions of variables (d/, d^-.de)-
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(3) 

N "  =  A ( < / , , < / 2 , . . . < / $ )  (4) 

5, =/(</„</,,A) (5) 

Johnson and Wichern [22] showed that when [%/, A"?,.., X„] is distributed as 

MVN([/V],O(A7, X2,..,Xn)), any linear combination of A', 

AX + C = 
a, 1 A", ^ ^22 ̂ 2 

apl^l + ap2^2 + 

+ a,„Ar
n 

+ «2„^n C2 

c„ 

(6) 

is distributed as a multivariate normal distribution or 

MVN(/^+04 c*Xi, X2,..,Xn) A' ) (7) 

The response functions in Eq. (3-5); however, are nonlinear as they are derived 

through a set of complicated equations. Expanding the functions into a Taylor series is 

suggested. In general, the nonlinear response function y(x) can be approximated by using an 

extended Taylor series expansion up to the sixth order as follows, according to [17, 20]. 

Y  #  f ( M l > M 2 > ~ M n )  +  ̂ ( X < ,  ~ M a ) f a  +  I T  2 2  O f w  ~ M a ) i ^ b  ~  M b )  f a b  +  "  
a  a b  

+  ̂  - M a ) ( X b  ~ M b ) ( X c  -  M c ) ( X j  -  M  J )i.Xe - Me) fabctie ~ M)*] 

(8) 

abcUe 

where fa,fab are partial derivatives off with respect to Xt which is evaluated at Xt = //,. The 

last term of Eq. (8) is negligible terms of sixth order and higher. 

The variability of the errors at six locators is small enough to apply only the first 

order of the Taylor series. The disadvantage of this method is that the Taylor series will only 

provide accurate results within a limited range. The discrepancy between the Taylor series 
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approximation and the response function becomes more obvious as the distribution 

over a larger range. 

Linearizing Eq. (A.5), (A. 18), and (A.27), 

N'P(S) = g(M3) + [53 -M3]h^-] (9) 
OM3 

N;{S)=h ( M s ) H S s  (10) 
om5 

5,(5) = /(M,)+[5-MS][^-] (II) 
OM6 

where M„ = a set of /v„ and 5, = a set of and [<?„ -M„] = 

"/V 

^2-/^2 

< "An 

By substituting parameters from Eq. (9-11), ),(-^-)and (-^-) as X, 
3M6 dM3 ÔM, 

AMô), giMj) and h(M$) as C into Eq. (6), ot,N'p, and N" are distributed as 

N'„ - MVN(g(M, )(̂ -)') (12) 
CM 3 OiV/3 

iv; ~ MVN(Zz(M$ ),(-^-)<7(J5 X-^L)') (13) 
oAfj DM, 

ô, ~ MVN(/(M6 ), X#.)-) (14) 
5M6 ÔM6 

where 
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°W„ ) = 

c r { d  , , < / , )  

al 

a { d { , d n )  

< r ( d 2 , d „ )  

sym 

(15) 

In summary, we can see that the variability of the target point, representing the 

workpiece location and the normal vectors of the workpiece primary and secondary plane, 

representing the workpiece orientation, are functions of the partial derivative of the response 

functions with respect to the surface errors. 

APPROXIMATION BY MONTE CARLO SIMULATION 

Simulation becomes a choice when the problem cannot be solved for exact solutions, 

such as the following: [22] 

1. Data is either extremely expensive or impossible to obtain. 
2. The system or model is so complex that it cannot be described analytically. 
3. The model can be explained analytically, but the derivation of the solutions is not 

straightforward. 

Monte Carlo simulations are distinct from other methods since it is neither subject to 

statistical independence nor is it restricted to a specific type of probabilistic distribution. 

Despite such simplicity, computational intensity still exists because a large sample size with 

low variance is required to assure accurate results. Another drawback is that whenever the 

distributions of the variables change, random numbers must be regenerated and the whole 

simulation procedure needs to be repeated. 
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RESULTS 

This section is composed of 2 principal subsections: the analysis of the distribution 

and the comparative numerical results obtained from Monte Carlo simulation and Taylor 

series approximation. Before the moments can be calculated, multivariate statistical methods 

will be used to determine the distribution of the data. 

RESULTS FROM TAYLOR SERIES APPROXIMATION 

By definition, Eq. (12-14) suggest that the distribution of the target point locations 

and the orientation of the workpiece are multivariate normal distributions associated by 

parameters shown in the following equations. 

jV;~MVN(//„,Zp) (16) 

ff;~MVN(//„Z,) (17) 

5, — MVN(//0,2„) (18) 

where and S0 are covariance matrices associated in the orientation of the primary and 

secondary planes, and the location of the workpiece, respectively. 

RESULTS FROM MONTE CARLO SIMULATION 

Unlike with the Taylor series approximation, distribution assessment of random 

numbers generated from Monte Carlo simulation is not straightforward. To do so, there are 

three major steps to perform. For each variable or error at each locator, a random number is 

created based on a type of statistical distribution assigned by a designer. To obtain the 

workpiece location and orientation, such random numbers are combined through Eq. (A.5), 

(A. 18) and (A.27). These two steps are repeated until the data generated from the random 
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numbers is large enough. Deciding how large the sample size would be is sometimes 

subjective. Accurate results may not be achieved upon an insufficient sample size; however, 

a large sample size may be redundant and would require extra time and effort to analyze. A 

sample size of 2500 was used in this study, and is considered adequate because it clearly 

reveals the shape of the prospective distribution. After the set of the data is created, the 

moments of the distributions are determined by using standard statistical methods. 

DISTRIBUTION OF WORKPIECE LOCATION 

In this section, the results from the Monte Carlo simulation based on 2500 samples 

will be presented. The nominal values of workpiece location and workpiece orientation, 

which is signified by the normal vector of the primary and secondary plane, are shown in 

Table I. The normally distributed data represented surface errors at six contact points were 

generated by a computer. The means and variances from each distribution are selected to 

include a combination of negative and positive errors. The unit of the data used throughout 

this project is millimeter. 

Table 1. le nominal values of the target point and workpiece orientation. 
variables nominal value 

5 [25.00 25.00 0] 

K 
[0 0 1] 

[10 0]  

The errors at six contact points here are randomly generated based on a variety of 

distributions which are expected to be found in reality. We assume that the distributions of 

the errors in the same plane are alike. For example, the errors at the contact points I, 2 and 3 

are normally distributed with the similar means and variances because these three contact 
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points are located in the same plane. The moments of the distributions of the errors at 6 

locators are tabulated in Table 2. 

Table 2. The moments of surface errors. (* the means of the distributions and b the variances). 
Data d, d2 di d4 ds de 
Set 

i 0.0011" 0.0095 -0.0055 0.0031 -0.0005 0.0029 
0.2553b 0.2470 0.2564 0.0397 0.0387 0.0924 

2 -0.0049 -0.0087 -0.0012 -0.0027 -0.0192 -0.0071 
0.0412 0.0391 0.0392 0.2522 0.2567 0.0910 

3 0.0031 -0.0231 0.0202 0.0053 0.0059 0.0011 
0.2463 0.2604 0.2502 0.0929 0.0890 0.0406 

4 0.0043 -0.0028 -0.0039 -0.0031 0.0080 -0.0128 
0.0394 0.0407 0.0395 0.0850 0.0906 0.2612 

5 -0.0010 0.0100 0.0047 -0.0056 0.0073 0.0010 
0.0922 0.0943 0.0894 0.2460 0.2487 0.0410 

6 -0.0027 0.0010 0.0062 0.0033 -0.0007 -0.0111 
0.0917 0.0933 0.0869 0.0389 0.0387 0.2552 

The procedure of assessing the distribution of the workpiece location begins with an analysis 

on scatter plots (Figures 3(a-d)). Since the workpiece location is composed of 3 components, 

the projected location onto x, y and z axes, the plots of x-y, x-z, y-z, and x-y-z are investigated 

to see if systematic patterns of any distribution present. According to [22], if the data are 

distributed as a multivariate normal distribution, each bivariate distribution must be normal 

and the contours of constant density would have elliptical or circular shape. The elliptical 

clouds exhibited in Figures 3(a-d) suggest a normal distribution. In 3-dimensional system; 

however, it does not guarantee the global multivariate normal relationship among the three 

variables. To evaluate the distribution of multivariate data, the normality test is performed 

by constructing a chi-square plot (see detail in [21]). 

To construct the chi-square plot 

1.Calculate squared distances D j  = (xy — x ) ' S ~ l ( x t  -x), where/ = 1,2,..n and 5 is a 

covariance matrix 

2,Order the squared distances from smallest to largest as £>,20 < D,22) <... < Z)2 
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y 

(c) y-z plot (d) x-y-z plot 

Figure 3. The scatter plots of the workpiece location. 
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. 1  .  I  . 1  
J ~ ï  , J ~ ?  

3.Graph the pairs {qc A —),D," ), where qc ( —) is the 100( —) quantité 
'H n n n 

of the chi-square distribution with p degrees of freedom. In particular, 

J'~\ ,  n~J + \ 

If the data are drawn from a multivariate normal distribution, the plot should be 

similar to a straight line through the origin with slope equal to one. Any systematic curves 

indicate lack of normality and points far from the line suggest outlying observations. The 

data were plotted in Figure 4, which strongly indicate that the workpiece location is a 

multivariate normal distribution. 

Figure 4. The normality plot of the workpiece location. 
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DISTRIBUTION OF WORKPIECE ORIENTATION 

Since the workpiece orientation is denoted by the combination of the primary and secondary 

plane orientation, the evaluation of its distribution is therefore based on two separate 

behaviors of the associated planes. The variability of a plane can be regarded as that of its 

unit normal vector. Figures 5(a-d) are the plots showing the orientation distribution of the 

primary plane. These plots indicate the negligible variability along z axis as compared to 

those in the x and y axes. We will consequently consider the variability of the primary plane 

orientation as if it is 2-dimensional. When the variability in z axis is ignored, the distribution 

of the primary plane is evidently bivariate normal distributed, see Figure 5(a). 

Similar to the analysis on the distribution of the primary plane, for the secondary 

plane we will consider only the bivariate distribution between the data in y and z axes since 

the variability in x direction is extremely small. In Figure 6(c), the normality pattern is 

clearly presented. 

NUMERICAL RESULTS 

The results from the Taylor series approximations and the Monte Carlo simulations 

strongly support the conclusion that the resultant distributions of workpiece location and 

orientation, which are functions of normally distributed surface errors, are as well normal 

distributions. The shape of the distribution of workpiece distribution with 3 variables can be 

simply pictured as a football with the mean of the distribution located at the centroid of the 

ellipse. Note that, the mean value of the resultant distribution could be slightly different 

from the nominal workpiece location or orientation as a result of the shift of surface error 
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2  >-

w< 

y * 

(c) y-z plot (d) x-y-z plot 

Figure 5. The scatter plots of the primary plane orientation. 
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(c) y-z plot (d) x-y-z plot 

Figure 6. The scatter plots of the secondary plane orientation. 
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means from their nominal values. However, once the means of the surface errors correspond 

to the nominal values and all of the errors take on their means, the workpiece will be located 

right at its theoretical position. The distribution (or shape of the football) is controlled by the 

variances and covariances among the x, y and z coordinates of workpiece location and 

orientation. Also note that, the distributions of workpiece location and orientation are 

dependent to each other since they are resulted from the same set of surface errors. It is of 

interest to see how the variability of the surface errors in each plane contributes to the 

displacement and variability of workpiece location and orientation. To achieve this goal, we 

will use the volume of the distribution to quantify the variability of the workpiece location 

and orientation. 

According to [21], the volume of the ellipsoid of probability I-a, for which the 

number of the variables greater than 2, is given by 

V = C* |Z|'/2 (19) 

where Z is a variance-covariance matrix and C is a constant given by 

?nn/2 

C = ——-(Zn(a)Yn (20) 
»r(|) 

where F is a gamma function and Zn *s a chi-square function with n degrees of freedom 

Since the volume of a Nn (//,£) distribution is proportional to |S|1/2 or a generalized 

variance, we will use only the second term of Eq. (19) to analyze the effect of variability of 

surface errors in each plane on the variability of the workpiece location and orientation. 

Table 3, 4 and 5 contain comparative results from Taylor series approximation and Monte 

Carlo simulation for each data set. 
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Table 3. The results from both methods for the workpiece location. 
Data 
Set 

Taylor Series Approximation Monte Carlo Simulation Data 
Set Mean III"1 Mean IS"2 

1 [25.0132 24.9828 0.0023] 0.2288 [25.0278 24.9815 0.0199] 0.2307 
2 [25.0018 24.9964 -0.0059] 0.1383 [25.0160 24.9961 -0.0031] 0.1368 
3 [24.9787 25.0297 0.0012] 0.2493 [24.9953 25.0285 0.0187] 0.2480 
4 [24.9843 25.0193 0.0101] 0.1012 [24.9907 25.0190 0.0129] 0.1023 
5 [24.9990 25.0120 -0.0066] 0.1932 [25.0157 25.0116-0.0005] 0.1884 
6 [25.0090 25.0141 -0.0081] 0.1269 [25.0156 25.0137 -0.0017] 0.1258 

Table 4. The results from both methods for the primary plane orientation. 
Data 
Set 

Taylor Series Approximation Monte Carlo Simulation Data 
Set Mean 121" Mean IS™ 

I [-0.0002 0.0002 1.0000] 1.75e-4 [-0.0002 0.0002 0.9998] 1.76e-4 
2 [0.0002 -0.0001 1.0000] 2.75e-5 [0.0001 -0.0001 1.0000] 2.72e-5 
3 [0.0005 -0.0006 1.0000] 1.74e-4 [0.0005 -0.0006 0.9998] l.75e-4 
4 [0.0001 0.0001 1.0000] 2.76e-5 [0.0001 0.0001 1.0000] 2.80e-5 
5 [-0.0002 0 1.0000] 6.37e-5 [-0.0002 0 0.9999] 6.24e-5 
6 [-0.0001 -0.0001 1.00001 6.27e-5 [-0.0001 -0.0001 0.9999] 6.24e-5 

Table 5. The results from both methods for the secondary plane orientation. 
Data 
Set 

Taylor Series Approximation Monte Carlo Simulation Data 
Set Mean HI Mean isr-

1 [-1.0000-0.0001 -0.0002] 7S4e-5 [-0.9999 -0.0001 -0.0002] 7.95e-5 
2 [-1.0000 -0.0003 0.0001] 8.08e-5 [-0.9999-0.0003 0.0001] 7.86e-5 
3 [-1.0000 0 0.0005] 1.21e-4 [-0.9999 0 0.0005] 1.18e-4 
4 [-1.0000 0.0002 0.00011 4.74e-5 [-0.9999 0.0002 0.0001] 4.8le-5 
5 [-1.0000 0.0003 -0.0002] l21e-4 [-0.9999 0.0003 -0.0002 1.18e-4 
6 [-1.0000-0.0001 -0.0001] 4.79e-5 [-0.9999 -0.0001 -0.00011 4.84e-5 

CONCLUSION 

The results indicate that the discrepancies between the moments estimated from 

Taylor series approximation and Monte Carlo simulation are not significant. Both methods 

will provide accurate solutions under different limitations as mentioned previously. Taylor 

series is recommended whenever the variability of the variables is not large and calculating 

for partial derivatives is not time consuming. Alternatively, Monte Carlo simulation is much 

simpler but requires large sample sizes to assure accurate results, and higher computational 

effort. 
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It is unlikely to fabricate a geometrically and dimensionally perfect workpiece. As 

presented in this paper, once the workpiece is set in a fixture the location and orientation of 

the workpiece are displaced by surface errors at contact points. Being aware of variability of 

location and orientation of the workpiece would help in tolerancing and fixture design. 
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CHAPTER 3. DETERMINATION OF APPROPRIATE 
TOLERANCES OF MACHINE FEATURES WHEN THERE 

ARE SURFACE ERRORS AT THE FIXTURING POINTS 

A paper to be submitted to the Journal of Manufacturing Science and Engineering 

Supapan Sangnui and Frank E. Peters 

ABSTRACT 

The objective of this study is to show the impact of the variability in workpiece 

location and orientation to feature tolerancing. A feature is fabricated to the workpiece, and 

its location and orientation will be studied. Because of an inconsistency in location and 

orientation of the workpiece coordinate system with respect to the machine coordinate 

system, variability in feature position and orientation is expected. In this work, the 

workpiece will be assumed to sit at its nominal location and orientation. Instead of modeling 

transformation to the workpiece, an equivalent transformation is applied to the cutter. 

Multivariate statistical analysis will be applied to figure the contour of the distribution. Once 

the distributions of feature position and orientation are known, circular variation region, 

which occupies the desired probability of acceptance, can be achieved through statistical 

methods [13-22]. 
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LIST OF SYMBOLS 

E variance-covariance matrix 
Zp variance-covariance matrix of the hole position 
pi mean of the distribution 
HP mean of the distribution of the hole position 
<jj standard deviation of i'h variable 
cr, variance of (h variable 
Pij correlation coefficient of fh and j'h variables 
T transformation matrix 
<f> angle of rotation 
u axis of rotation 
P hole position 
N normal vector of the plane or the direction cosine of the hole axis 
Pw nominal position of the hole in the workpiece ref. system 
Qw actual position of the hole in the workpiece ref. system 
Pf nominal position of the hole in the fixture ref. system 
Qf actual position of the hole in the fixture ref. system 
L length of the hole 
e eigenvector 
A eigenvalue 
R radius of the circular variation region 
Np normal vector to the workpiece primary plane 
Nc direction cosine of the hole 
Pp location of the workpiece primary plane 
Pc virtual location of the hole 
O true location of the hole 
Q point of intersection between the workpiece primary plane and the hole 

axis 



www.manaraa.com

36 

INTRODUCTION 

For most applications, it would be possible but infeasible to map a part coordinate 

system with that of a machine. This inconsistency results in variation in part location and 

orientation relative to the machine coordinate system, and probably threatens accuracy of a 

feature which is subject to be made on such part. Earlier, the authors investigated the impact 

of surface errors at contact points on the deviation in position and orientation of a fixtured 

workpiece. A relationship between the distribution of surface errors and the resultant 

distributions of the workpiece location and orientation was established. In this paper, 

implementing quantitative knowledge of the part displacement, the authors are able to 

analyze the variation of a component feature. A method to define a geometric variation zone 

of the feature in relation to the part displacement is presented. This zone is equivalent to a 

tolerance zone except that it is constructed based on an actual variation of the feature, while 

the tolerance zone is an allowable zone specified by a designer. 

Although there are several factors taking part in establishing tolerance of machined 

features, understanding how feature variation is affected by the inconsistency existing 

between the systems of the part and of the machine would help improve the end product 

accuracy. Once the variation of the original part is known, by implementing the method 

developed here manufacturers would be able to create higher quality products through 

imposing more appropriate tolerances, modifying the cutting tool path to compensate these 

variable part properties or improving the fixture. This paper introduces a new aspect which 

would make the mechanics of tolerancing more functional. 
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STATISTICAL TOLERANCING 

Many tolerancing methods have been proposed to control variability in 

manufacturing. However, conventional tolerancing that we are using nowadays is inadequate 

to represent the variability of manufacturing parts for some reasons as follows [5]. 

1. Conventional methods treat the tolerances as limits on the parameters of a parametric 
model. However, as geometric tolerancing represented by tolerance zones instead of limits is 
more widely accepted, conventional methods become more awkward. 

2. In assembly, tolerances that are built up from either worst-case methods or root-sum-
squares method are not accurate. Worst-case methods give results that are overly 
pessimistic, while the root-sum-squares method gives results that are too optimistic. 

Because of the above reasons, statistical tolerancing seems to be a choice to bridge 

the gap between variability in dimension and geometry of manufacturing parts and geometric 

tolerancing. Statistical tolerancing is a way to allocate tolerances by using probabilistic 

model to explain variable nature of the parts. Having advantages over the conventional 

tolerancing, both statistical and geometric tolerancing are becoming industry standard. It is 

important to explain geometric tolerance statistically. However, the distribution which best 

describes the variability in manufacturing is controversial. Despite some opposition [7, 8], 

many researchers [4-6] use a normal or Gaussian distribution to represent the variability. If 

the event of interest randomly occurs and the sample size is large enough, a normal 

distribution seems to be an excellent candidate. Even though the sample is not random, we 

can still theoretically assume a normal distribution with a large sample size by following the 

central limit theorem. Therefore, a normal distribution is adopted in the first part of this 

paper to denote the variable nature of surface errors. 

Multivariate analysis has been used to explain problems which are under control of 

several parameters, since they are mathematically tractable and a nice result can be obtained 
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[11], for many applications. Multivariate normal distributions will be used to describe our 

fixturing models. Unlike a univariate normal distribution where the probability is 

represented by the area under the bell-shaped curve, probability of the multivariate 

distribution is represented by volumes under the surface over regions defined by intervals of 

the x, values. The equation of multivariate normal distribution with n parameters is presented 

in Eq. (I). 

f ( r \ -  !  
J y }  n / 2 | v l " *  (1) 

V A 
x: Mi 
: 

V n _  

(2n)n/2|i| 

where -co <x, <«, / = l ,2, . . ,n, 2" is a variance-covariance matrix and x = 

When n=2, a bivariate normal distribution is generally explained by the following equation. 

where a} is a standard deviation of parameter i, erf is a variance of parameter i, and Pij is a 

correlation coefficient of parameter i and j. 

When x/ and x, are independent, the equation can be simplified by substituting pn 

with 0. In other words, the joint distribution of x/ and xj can be written as a product of two 

univariate normal densities. 

f(xl,xz) = 
2n^Ja~a~ 

' expC^K^)- + A^S-)=]> (3) 
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x2-«ds •4 4 

contour of the distribution 

0.15 . 

0.05 -

x1-«ds 

Figure 1. A bivariate normal distribution. 

A bivariate normal distribution is pictured in 3-dimensional space as "a hill" and the 

probability is taken from the volume under the hill within specified ranges of x/ and x?, as 

seen in Figure I. At a given probability density, there exist points that are equidistant from 

x/-xj plane forming a single layer of points, which is bounded by various shapes of contours. 

Investigating the contours is important because it provides us with useful information about 

characteristics of the distribution. The contours of bivariate normal distributions tend to be 

elliptical except when pn = 0 and axi-trx2 as shown in Figure 2. The orientation of the 

contour mainly depends on cfx/, <?X2 and pn, and the location is determined by /ixi and fjX2. 

Examples of contours of bivariate normal distributions are shown in Figure 2. 
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C T x l = a x 2 ' P l 2 = 0  

CTxrC T x 2 ' P t 2 > 0  

(C) 

• Xi 

- X, 

C T x l > C T x 2 ' P l 2 = 0  

1^X2 

mi 
C T x l < C T x 2 . P t 2 < 0  

(d) 

Figure 2. The contour of bivariate normal distributions associated by different variances and 
correlation between xt and x2. 

LITERATURE REVIEW 

There are a number of researchers developing algorithms to establish appropriate 

tolerances for features. Roy and Li [I] investigated a complete form tolerance zone 

definition based on model variation. The paper proposed two approaches to represent the 

variant boundary surfaces that approximated the real world form variations and simulated the 
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variations by planar surfaces. The first approach was to generate random admissible points 

that would be used to construct curved surfaces, where the latter approach was to construct 

simulated planar surface, which was corresponding to the randomly generated points. 

Nevertheless, this model was highly sensitive to a distribution of the random number, which 

the authors dismissed to discuss in the paper. Later, Roy and Li [2] proposed a procedure to 

represent size, orientation and position tolerance for polyhedral objects. The variational 

model was constructed from its nominal boundary model by allowing each of the bounding 

surfaces to be varied within some specified tolerance zones, and by defining new edges and 

vertices at the surface intersections. The variational model was established for the size, 

orientation and position tolerance, then the resultant tolerance was calculated based on the 

aggregation of tolerances, which were applicable to the surface. Since the surface defined in 

the paper was planar surface, there were a few parameters controlling the location and 

orientation of the surface. EIMaraghy et al [3] proposed a mathematical definition for 

geometric tolerance zones according to the ANSI Y14.5M Geometric Tolerance Standard. 

The paper included a tolerance analysis of both planar and axis features. The parameters 

defining a sample space were the parameters used to generate the components. A random 

number generator, with uniform distribution, was utilized to select sample points within the 

sample space. Once again, the efficiency of the model seemed to be dependent on the 

selected distribution of the random parameters. To date, no statistical model has been widely 

accepted to represent the variability produced in manufacturing. It is almost impossible to 

choose a single distribution to represent such variability from every process. The nature of 

the geometrical error tends to vary from process to process or even under the same process 

the error model can be different upon the parameters of the process change. These 
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researchers focused on developing variational models, which is claimed to reasonably 

represent the geometrical variability of objects. In addition, more work has been carried out 

in the area of imposing tolerances based on the information from CMM or other measuring 

devices. Hong et al [4] proposed ways to define tolerance zones of straightness and flatness 

by using simulated annealing. The algorithm employed the geometrical properties obtained 

from coordinate measuring machines and combines nonlinear optimization with 

computational geometry. Traband et al [5] presented an algorithm to determine if features 

meet flatness and straightness requirements according to ASME Y14.5M. The authors used 

the points measured from CMM to represent geometric properties of the features. The 

minimum tolerance zone is derived by utilizing convex hull concept. 

METHODOLOGY 

Geometric tolerancing was developed to overcome three main shortcomings of 

conventional tolerancing schemes: incapability of conventional methods in controlling all 

aspects of the shape of a part, exclusion of datum concept, and unsuitability of extending to 

control locations or angular dimensions [12]. There are five types of geometric tolerances, 

which are location, orientation, form, profile and runout tolerances (see detail in [13]). Our 

goal is to provide information needed in establishing more appropriate tolerance of the 

feature. In this study, a type of positional tolerance applied to a cylindrical feature will be 

the focus of our investigation. Since orientation tolerance of a cylindrical feature is a part of 

positional tolerance, it is rarely used unless specifically 
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needed. As a result, only positional tolerancing of a cylindrical feature will be presented 

here. 

GEOMETRIC ANALYSIS 

Suppose that the workpiece is fixtured at PW with respect to the machine reference 

system in order to drill a hole at PF with respect to the workpiece reference system. 

However, in a consequence of undesirable factors the workpiece will be displaced to Pi (see 

Figure 3), while the hole stays at the same position in the machine reference system. This 

inconsistency causes problems in locating and results in dimensional and geometrical errors 

of the feature. Not only the position of the hole will be subject to variation, but also its 

orientation. They are dependent on each other since they both are functions of the same 

factors. 

cutter 

fixture ref. system 

Figure 3. The displacement of the point of interest Qf—>Pf 
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While any point on the workpiece can be used to define its position, for simplicity, 

we will designate the position of the feature and that of the workpiece to be the same. In this 

study, the feature position is targeted at the mid point between the top and bottom planes to 

reduce an angular error caused by variable workpiece orientation. The axis of the feature is 

thus obtained by projecting the point, which represents the feature position up and down, 

along the cutting direction onto the top and bottom planes. The projected points on these 

planes are considered the extreme points or the end points of the potential axes. The 

geometric variation region representing the variation of the feature, as affected by the 

variability in workpiece location and orientation, is the zone containing the extreme points. 

In this section, a method to define the geometric variation region that includes a desired 

proportion of the extreme points will be presented. 

Before the geometric variation region can be defined, the distribution of the projected 

or extreme points will be evaluated, and the details are illustrated in Appendix B. 

STATISTICAL ANALYSIS 

Statistical methods are used to evaluate the distribution of the projected or extreme 

points, and later to find the geometric variation region in relation to the desired probability of 

acceptance. 

TRANSFORMATION OF AN ELLIPSE 

The distribution of the projected points is proved in Appendix B to be normally 

distributed and has ellipse-like contour. It is derived under the influence of correlations 

between variables. However, the establishment of circular variation regions developed by 

researchers [14-22] in the later section is valid only when the variables are independently and 
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normally distributed, or when the ellipse is oriented similar to Figure 2(a) and 2(b). 

Therefore, appropriate transformation, which makes the structure of the data having such 

properties, is required. If the mean of the distribution is offset from the origin of the system, 

or fitxi or fiX2 are not zero, the transformation would be translation. Rotation about point (fixi, 

Hxi) by 9 is needed if the axes of the ellipse do not coincide with the system's axes. The 

angle, 0, can be obtained from the following equation. 

tan 20 = 2P^-<J*\<yxi 
-V'xl 

(4) 

Figure 4. The determination of ellipse in two coordinate systems. 

From Figure 4, the ellipse is centered at (JJxi ,  FJxz)  and its axes tilt by 0 with respect to 

Xi-X2- coordinate system. The ellipse will be rotated clockwise, allowing its major and minor 

axes to correspond to the axes of the X1-X2 frame. It is then translated by [pxi, pxj\ to the 

origin of the system. These steps are represented by the following transformation matrix. 
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cos(0) sin(S) /4X[ 

T = -sin(0) cos(6) /jx2 

0 0 1 

(5) 

After the transformation is achieved, the variances of the newly transformed 

distribution can be obtained by performing the above calculation backward. As previously 

stated, the characteristics of the contour are determined by the eigenvalues and eigenvectors 

of variance-covariance matrix of the population. A change in the orientation of the ellipse 

results in new eigenvectors, which coincide with the x/ and x? axes (as shown in Figure 5). 

Let's call the original distribution, A, and the transformed one, B. This means that the 

eigenvalues of A and B are the same. In the previous section, we have found the variance-

covariance matrix of A, and let's name the eigenvalues of this matrix, &At, and kAi-

We know, from Figure 5, that the eigenvectors of B must be vs/=[l 0] and v&f=[0 I]. From 

the definition of eigenvectors and eigenvalues, 

We also know that the components of B are independent, see Figure 5 compared to Figure 2, 

so the covariance terms in the variance-covariance matrix of B are zero. 

Substitute Eb, vb and into Eq.(7) and we derive 

Now, we are ready to find a circle which is concentric with the ellipse and occupies a desired 

bivariate normal probability. 

(6) 

VB ~ ^"BVB (7) 

(9) 
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C2 

Figure 5. The transformation of the ellipse. 

CIRCULAR VARIATION REGION 

There are many ways to draw a circle with a specified probability out of the elliptical 

region of a bivariate normal distribution. Integrating over the region is one choice. 

However, such high precision would be redundant in practice. Several statisticians [14, 15, 

19, 22] made formulas related to a geometric variation region established from a multivariate 

normal distribution available. The establishment of circular regions, which include a 

specified fraction of a bivariate normal distribution was developed by E. N. Oberg [21]. He 

proposed 3 approximate formulas to obtain a radius of the circle, R<JI, RD2, and RD3- The first 

formula is derived from equating the area of a circle of a radius, Rdi, to the area of the ellipse, 

which includes the probability, p. This formula will closely estimate the true R when <JBI is 

close to <jb2, but will underestimate the true R whenever ersl * <rfl2, making it undesirable in 

some applications. By performing integration over a circular area, Rjz of a circle 
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circumscribing a desired probability is derived. The last formula is obtained by taking the 

root-mean-square of the former two. It yields better results when > 0.5 ; crBl < erg2. 

Barter [18] employed numerical integration to determine the factor K, which is equal to R/CTI 

when (T/ is the smaller standard deviation. Lowe [20] used numerical integration to calculate 

the integral of a bivariate normal distribution. The author provided tables of probabilities of 

the bivariate normal distribution, which are bounded by the given offset circles. Weingarten 

and Donato [23], and Gilliland [16] proposed approximate formulas to define a radius of the 

circle. They then tabulated and compared the results derived from these formulas. Halt and 

Sheldon [17] published procedures and tables of tolerance regions obtained from the 

bivariate normal distribution, which was claimed to be the most accurate at the time. Below 

are the explicit formulas provided in the mentioned papers. 

Formulas by E. N. Oberg [21]; 

(10) 

(11) 

(12) 

Formula by Harter[18]; 

RD = ATcr, (by calling the larger of the two standard deviation <%) (13) 
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K is dependent on c which is the ratio of 07 and 05 or—-. The values of K 
°2 

corresponding to c and the cumulative probability p are tabulated in Harter [18] and also 

presented below in Table I. However, when c = I, closed form of K is derived determined 

by Eq. (14). 

K = V~21n(l-p) (14) 

Table 1. The values of Kobtained from Harterfl8], 
probability 

P 
ratio of cr, and cr?, c probability 

P 0.0 0.1 0.2 0.3 0.4 0.5 
0.5000 0.67449 0.68199 0.70585 0.74993 0.80785 0.87042 
0.7500 1.15035 1.15473 1.16825 1.19246 1.23100 1.28534 
0.9000 1.64485 1.64791 1.65731 1.67383 1.69981 1.73708 
0.9500 1.95996 1.96253 1.97041 1.98420 2.00514 2.03586 
0.9750 2.24140 2.24365 225053 2.26255 2.28073 2.30707 
0.9900 2.57583 2.57778 2.58377 2.59421 2.60995 2.63257 
0.9950 2.80703 2.80883 2.81432 2.83289 2.83830 2.85894 
0.9975 3.02334 2.02500 3.03010 3.03898 3.05234 3.07144 
0.9990 3.29053 3.29206 329673 3.30489 3.31715 3.33464 

probability 
P 

ratio of a, and oj, c probability 
P 0.6 0.7 0.8 0.9 1.0 

0.5000 0.93365 0.99621 1.05769 1.11807 1.17741 
0.7500 1.35143 1.42471 1.50231 1.58271 1.66511 
0.9000 1.79152 1.86253 1.94761 2.04236 2.14597 
0.9500 2.08130 2.14598 2.23029 2.33180 2.44775 
0.9750 2.34581 2.40356 2.48494 2.58999 2.71620 
0.9900 2.66533 2.71515 2.79069 2.89743 3.03485 
0.9950 2.88859 2.93347 3.00431 3.11073 3.25525 
0.9975 3.09871 3.13969 3.20586 3.31099 3.46164 
0.9990 3.35949 3.39647 3.45698 3.55939 3.71692 

In addition, Lowe[20] has tabulated the integral of the bivariate normal distribution 

over an offset circle. Below is a part of the table presented in Lowe's work, which is useful 

for this study. The numbers in the table represent the probability covered by a circle with 

radius R. The probability belongs to the bivariate normal distribution with the variances of 

07 and CT2 where <r, < cr2. 
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Table 2. The probability of acceptance related to R and 07. cr? obtained from LowefZOl 
CT|/<TZ R!<3i CT|/<TZ 

1 2 4 8 16 32 
I 0.393 0.865 1.000 0.999 - -

2 0.215 0.590 0.945 1.000 - -

4 0.110 0.325 0.666 0.953 1.000 -

8 0.055 0.167 0.371 0.679 0.954 1.000 

Figure 6. The circular region occupying a certain bivariate normal probability. 

From Figure 6, we can see that the circle and the ellipse share the same center point. 

The radius of the circle is dependent on the desired probability and the variances of the 

bivariate normal population, according to Eq. (10)-(14). The loss in efficiency in terms of 

area when using the circular region to represent the ellipse is discussed in Chew [14]. For 

example, when <7/ = 0.4788 and cr> = 1.010, by using Barter's equation in Eq.(13) the radius 

of the 95% circle is 2.2195, resulting in the area of 3.1587%. Based on the same ellipse, its 

area is 4.9262k, which is 55.95 % less than the area of the circle. This loss is smaller as the 

shape of the ellipse is getting closer to a circle. The loss is reduced to 0.88% when the ratio 

of 07 and Oi is increased to 0.8981. As previously mentioned, the ellipse contour is 
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controlled by the eigenvalues of the covariance matrix of the population. It is likely to 

become a circle when the eigenvalues are close to each other. The term that determines the 

difference between the eigenvalues is ^(<rf -c r ; ) 2  +4of2 . To minimize the difference, 

cr, =er2 and <rl2 =0 (15) 

Theoretically, the loss in area efficiency is negligible if <x in both directions are 

approximately the same and the covariance <7/2 is close to 0. Researchers like Oberg [21] 

tried to minimize the difference in area between the ellipse and the prospective circle. At the 

same desired probability, when the correlations among the variables are getting higher, the 

radius of the circle will be larger, trying to maintain the same probability. The drawback is 

that the circle tends to include the larger area of zero bivariate normal probability. 

RESULTS 

The theoretical results presented in this section are obtained by implementing surface 

errors shown in Table 3, 4 and 5 in the previous chapter. This information represents the 

variability of workpiece position and orientation, which will be used as input to evaluate 

geometrical variation of the feature. The characteristics of the feature position based on each 

set of surface errors are presented in Table 3. 

Table 3. The characteristics of the projections. 
Data Set <T, O-v A» 

I 0.5859 0.5574 -0.0595 
2 0.7020 0.6335 -0.4869 
3 0.7162 0.6022 -0.1910 
4 0.2966 0.4945 -0.1653 
5 0.7897 0.6518 -0.4866 
6 02879 0.4679 -0.0873 
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The last column contains the correlations between the x and y components. It indicates 

dependency between the variables, which is problematic in determining geometrical variation 

region. The above distributions are transformed by using Eq. (5) in order to eliminate such 

correlations. Once the desired distributions were achieved, circular variation regions will be 

established by using Eq. (10-13) and presented in Table 4. The numbers in the second lines 

of each row in the first column represent the ratio of 07 and 05. The percents of the loss of 

area efficiency are shown under the radiuses of the circular region. When the ratio is close to 

1, the radiuses obtained from all four equations are similar. However, whenever the ratio of 

ay and tr? is getting lower, the radiuses in the second column tend to be smaller than the 

others. It is because the equation which is used to calculate these numbers is subject to 

equating the area of the ellipse and the circle, but ignores the correlation between the 

variables. 

Table 4. Circular variation regions when p = 0.95 derived from Oberg [21] and Harter[18], " the 
A A f ^ AM/J ^ A f A I AM» A ̂ amm n^VS A * AM » 

data set RJ,  RJ? RJS RK 
1 

(0.8981)1 
1.8454 

2.74e-3%b 
1.8507 
0.58% 

1.8480 
0.29% 

1.8535 
0.88% 

2 
(0.3942) 

1.6523 
2.74e-3% 

2.0002 
46.54% 

1.8345 
23.27% 

2.1544 
70.01% 

3 
(0.7319) 

1.9403 
2.74e-3% 

1.9874 
4.91% 

1.9640 
2.46% 

2.0133 
7.67% 

4 
(0.5873) 

1.4387 
2.74e-3% 

1.5395 
14.50% 

1.4899 
7.25% 

1.5918 
22.42% 

5 
(0.4349) 

1.7773 
2.74e-3% 

2.0781 
36.71% 

1.9335 
18.36% 

2.2195 
55.95% 

6 
(0.7083) 

1.4615 
2.74e-3% 

1.5047 
6.01% 

1.4833 
3.01% 

1.5274 
9.23% 
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MODEL VALIDATION 

To validate the numerical model, an experiment was conducted using a special fixture 

and a coordinate measuring machine (CMM.) The workpiece used in this experiment was a 

prismatic piece (8x4x2 inches) with a 1-inch diameter through hole in the center of the 

largest plan of the workpiece. This hole was the feature of interest, and its position and 

orientation during the experiments was measured. 

Since the purpose of the experiment was to study the effect of workpiece surface 

errors on the location and orientation of a workpiece, a method to introduce variability was 

needed. Instead of using workpieces with variable surface errors and a fixture with locators 

in fixed positions, the fixture was designed with adjustable locators. Spherical tips were 

placed on a micrometer body, and fitted onto the fixture. Variable surface errors could be 

simulated by moving the tips along the direction perpendicular to the workpiece datum 

surfaces. 

The workpiece was supported by six locators, three on the primary plane, two on the 

secondary plane, and the last one on the tertiary plane. While the workpiece was located in 

the fixture, its location and orientation were measured by using a CMM Through the 

information about the workpiece variability, we are able to determine geometrical variation 

of the feature that would help in establishing component tolerance thereafter. 

EXPERIMENTAL PROCEDURES 

Normally distributed random numbers representing errors at each locator were 

generated within variabilty ranges specified in Table 5. The numbers in the table are the 
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intervals that contain 3a of random number normal population with means at zero. 

According to the assumption stated earlier, all of the errors for locators in the same plane 

shared the similar distribution. 

Table 5. Variability 
range applied to each plane 
(in). 

With the micrometers set at their zeros, the location and orientation of the workpiece and the 

feature were considered nominal. In each of fifty trials for each data set, the CMM would 

take a measurement on designated workpiece components, collecting all geometrical 

properties that would be used later in the calculation. The numbers of measurement points 

used to measure the primary, secondary and tertiary planes were forty-five, twenty-four, and 

fifteen, respectively. Twenty-five points were used to determine the geometry of the hole. 

The orientation of the workpiece was obtained directly from the CMM software. The 

position was calculated from the direction-cosine normal to the primary plane, Mp, the hole 

axis, Nc, the location of the plane, Pp, and the virtual location of the feature, Pc (Figure 7). Pc 

could not be considered the true location of the cylindrical because the points picked on the 

hole's inner surface by the CMM did not guarantee complete surface coverage. The true 

position of the feature, O, which was theoretically at halfway on the hole axis, were located 

by the procedure described in the following section. To evaluate the effect of the workpiece 

displacement on the variability of the feature, the micrometers were used to simulate errors at 

the fixturing points that caused the workpiece to divert from its nominal position. The 

workpiece would be pulled towards the locators or the micrometers when the errors were 

Data Set Primary Plane Secondary Plane Tertiary Plane 
1 r-0.0785,0.07851 r-0.0785, 0.07851 r-0.059, 0.0591 
2 r-0.118, 0.1181 f-0.118, 0.1181 r-0.0785. 0.07851 
3 f-0.118, 0.1181 r-0.0785, 0.07851 r-0.0393 0.03931 
4 r-0.197, 0.1971 r-0.1575. 0.15751 r-0.0785, 0.07851 
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primary plane 

Figure 7. The determination of the workpiece or feature position. 

negative and would be pushed away from the locators, otherwise. The micrometers were 

then repeatedly adjusted to generate the information that would be used in subsequent 

calculation of workpiece's position and orientation. 

GEOMETRICAL ANALYSIS 

Generally, the characteristic of a plane can be obtained from the following equation 

where P is a point on the plane, Np is a normal vector to the plane, and D is a distance from 

the plane to the origin of the world coordinate system. In order to locate the position of the 

feature, the intersection point between the hole axis and the plane must be calculated. Once 

the point is found, it will be projected downward along the hole axis by the distance of 1 in, 

and there lies the position of the feature as shown in Eq (17). 

D  =  P » N  P (16) 
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0 = Q + Nc (17) 

where 

Q = Pc+tNc (18) 

and 

t = ~(-Pc*Np)+D (19) 
N c . N p  

STATISTICAL ANALYSIS 

After the experiment was completed, a method of evaluating the model proficiency 

was carried out. The following statistical method was used to compare the experimental and 

theoretical data. The hypotheses were tested whether the theoretical data were valid to 

represent the experimental ones, 

n{x - v)'S-] (x-„)<  Fp.n_p (a) (20) 
(«-/?) 

where n is a sample size of the data, x is a mean of the experimental data, n is a mean of the 

theoretical data, S~l is a variance-covariance matrix of the experimental data, and p is a 

number of parameters. 

If Eq. (20) is satisfied, it means that at the a level of significance the theoretical data, 

H, is a plausible value for the mean of the experimental distribution. In order to test the 

above hypothesis, the F statistic obtained from the right term of Eq.(20) will be compared 

with the critical value from the other side of the inequality. 
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Table 6. F statistics for the workpiece primary plane orientation obtained from each data set 
compared to the critical values. 

Data 
Set 

Sample 
Size Theoretical Mean Experimental Mean Critical Value F 

1 50 r-0.0021 -0.0012 0.9999] r-0.0008 -0.0006 0.99991 8.7320 0.9666 
2 50 r0.0052 0.0005 0.99981 [0.0057 0.0009 0.99981 8.7320 0.1573 
3 50 r-0.0010 0.0006 0.99981 r-0.0005 0.0010 0.99981 8.7320 0.1250 
4 50 r-0.0024 0.0011 0.99941 r-0.0018 0.0014 0.99941 8.7320 0.0531 

Table 7. F statistics for the workpiece secondary plane orientation obtained from each data set 
compared to the critical values. 

Data 
Set 

Sample 
Size Theoretical Mean Experimental Mean Critical Value F 

1 50 f0.9999 -0.0011 0.00211 fO.9999 -0.0016 0.00071 8.7320 1.5313 
2 50 fO.9998 -0.0007 -0.00521 [0.9998 -0.0001 -0.00531 8.7320 1.8321 
3 50 ro.9998 -0.0019 0.00101 [0.9998 -0.0016 -0.00081 8.7320 0.5457 
4 50 [0.9995 -0.0010 0.00241 [0.9995 -0.0004 0.0026] 8.7320 2.0834 

Table 8. F statistics for feature location obtained from each data set compared to the critical 
values. 

Data 
Set 

Sample 
Size Theoretical Mean Experimental Mean Critical Value F 

1 50 [-2.9623 -4.0119 -1.00061 [-2.9642 -4.0116 -1.01131 8.7320 0.6278 
2 50 [-2.9982 -3.9966 -1.00121 [-2.9962 -3.9974 -0.96341 8.7320 4.2673 
3 50 [-3.0044 -3.9972 -1.00121 [-3.0033 -3.9936 -0.99941 8.7320 3.8025 
4 50 [-3.0079 -3.9962 -0.99631 [-3.0042 -3.9888 -1.01091 8.7320 4.7906 

The data collected from the experiment then were used to establish geometric 

variability of the cylindrical feature. Geometric variability is a diameter of a cylinder within 

which the actual feature is allowed to move when it is subject to errors found in 

manufacturing. The geometric variability is analogous to a positional tolerance zone for a 

hole as defined for geometric dimensioning and tolerancing. As shown in Table 6-8, all the F 

statistics in the last column data are less than the critical values, indicating that the means of 

the experimental data are reasonably represented by the theoretical ones obtained from the 

model developed in this work. The results in Table 9 also strongly confirm the validity of the 

model as the difference between the predicted and measured values were 0.09% for location 

and 0.009% for orientation. 
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Table 9. Radii of the geometric variation regions (in). Rd,, Rd2 and Rd} are the radiuses obtained 
from Eq. (10-12). Top, mid and bottom are the top, middle and bottom ellipses, which are the 

Data Set experimental theoretical Data Set 

Rd, Rd2 Rdj Rd, Rd2 Rdî 

1 top 0.0011 0.0012 0.0011 0.0010 0.0010 0.0010 1 
mid 0.0010 0.0010 0.0010 

0.0010 0.0010 0.0010 1 

bottom 0.0010 0.0010 0.0010 

0.0010 0.0010 0.0010 

2 top 0.0021 0.0022 0.0022 0.0019 0.0019 0.0019 2 
mid 0.0019 0.0019 0.0019 

0.0019 0.0019 0.0019 2 

bottom 0.0018 0.0019 0.0018 

0.0019 0.0019 0.0019 

3 top 0.0008 0.0011 0.0010 0.0007 0.0008 0.0007 3 
mid 0.0007 0.0007 0.0007 

0.0007 0.0008 0.0007 3 

bottom 0.0006 0.0007 0.0007 

0.0007 0.0008 0.0007 

4 top 0.0032 0.0037 0.0035 0.0027 0.0029 0.0028 4 
mid 0.0026 0.0028 0.0027 

0.0027 0.0029 0.0028 4 

bottom 0.0024 0.0025 0.0026 

0.0027 0.0029 0.0028 

CONCLUSION 

This study proposes the idea of how to integrate the variability in workpiece location 

and orientation to feature tolerancing. The positional tolerance of a cylindrical feature is a 

diameter of a cylinder in which the feature's axis must lie. To impose such tolerance 

efficiently, we must take into account the variability in both location and orientation of the 

workpiece. Such information is then combined through an appropriate geometric analysis, 

yielding distributions of feature position and orientation. Elliptical contours are used to 

represent geometric variation of the feature. Once the distribution of the axis's end points is 

known, a circular region as a function of workpiece displacement is established to define the 

positional tolerance of the feature in relation with the desired probability of acceptance,/?. 

Calculating the radius, of which the circular variation region containing the accurate 

desired probability of acceptance, is not easy. Most researchers proposed numerical methods 
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to estimate the true radius of the circle. The closeness to the true radius is expected to 

change over the desired probability and the ratio of the variances in both directions. Each 

formula also generates different level of accuracy. To decide which formula is best is 

subjective. In tolerance analysis the choice of the desired probability is selective depending 

upon the application and the variable nature of the feature. As a result of high probability 

when used with the feature with a wide variety in dimension or geometry of interest, the 

tolerance will tend to be too large which may lead to difficulties in assembly or subsequent 

applications. Manufacturers will need to reduce the variability of the feature in order to 

satisfy tighter tolerance. However, tighter tolerance usually is associated with high cost. The 

loss of area efficiency is also another issue to be aware of. Extra care must be placed on the 

case where the correlation among the variables is too high. Establishment of a positional 

tolerance of machined features involves several parameters. Each parameter has its own role 

controlling the mechanics of tolerancing. A designer is responsible to find the way that 

would benefit the production the most. As the model was proven to be efficient in evaluating 

the variability of workpiece components given errors at locating areas, implementing the 

concept proposed in this work would help the designer impose the tolerance efficiently, and 

consequently reduce manufacturing cost and improve product quality. 
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CHAPTER 4. GENERAL CONCLUSION 

This study consisted of two sections. First, the development of a model to determine 

the displacement of a workpiece subject to variable surface errors at contact locations. The 

model in the first section applied a step-wise movement to a prismatic workpiece, to simulate 

the behavior of the workpiece when brought into contact with a 3-2-1 fixture. The surface 

error variation at the contact points was assumed to follow a normal distribution pattern. 

Statistical analysis was carried out by employing two different methods, Taylor series 

approximations and Monte Carlo simulations, as they reduce the difficulties in computing 

moments of the resultant distribution. The results indicated that the discrepancies between 

the moments estimated from either approach were not significant. However, they both 

provided accurate solutions under different limitations. Taylor series is recommended 

whenever the variation of the variables is not large and the calculation of the partial 

derivatives is not too complex. Also, the assumption of independency among variables must 

hold. Alternatively, Monte Carlo simulation is much simpler but it requires large sample size 

to assure accurate results, and it may involve relatively high computational efforts. 

The second part of this work was geometric variability analysis of machined features 

produced on a displaced workpiece. Once the model of the workpiece displacement was 

established, it is of interest to implement this technique to improve the quality of the features 

subsequently machined on that workpiece. In this second part, the effect of the workpiece 

displacement on the variability of feature location and orientation was investigated. Taking 

such effect into account, a new approach of feature tolerancing was proposed. A cylindrical 

feature was used as an object of study. The results suggested that the lower limit of feature 
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tolerance could be established when the variability of the surface errors at the contact 

locations and a probability of acceptance were known. In tolerance analysis, the choice of 

the desired probability is subject to the application and the variable nature of the feature. As 

a result of the high probability when used with the feature with a wide variety in dimension 

or geometry of interest, the tolerance will tend to be large, which may lead to difficulties in 

assembly or subsequent applications. Manufacturers will need to reduce the variability of the 

feature to make the tolerance tighter while maintaining such high probability. However, 

tighter tolerance is usually related to high production cost. 

Not only tolerancing, the models related to workpiece displacement are expected to 

have even greater contribution in the future to fixture design and process planning. The 

fixture could be redesigned in a way that it will be able to repeatedly position the workpiece 

closest to its theoretical location and orientation. Contact points could be relocated to 

wherever offering the most accurate workpiece positioning. In critical cases, the tool path 

could be modified to compensate for the error initially generated by the workpiece 

imperfection in dimension and geometry. 

In manufacturing, there are a number of factors accountable for the quality of the end 

products. It is sometimes inevitable to eliminate such factors that weaken the production 

efficiency. Being aware of their effect would discover ways that are the most beneficial to 

the production process. Understanding how the workpiece interacts with the fixture under 

less-than-perfect situation will allow us to allocate tolerances, which is one way to reduce 

manufacturing cost and improve product quality. 
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APPENDIX A. WORKPIECE TRANSFORMATION 

According to the assumption that the surface errors are measured normal to the 

workpiece planes, only the errors in these directions are thus accounted for workpiece 

displacement. The relationship between the nominal contact point (P,) and the actual contact 

points {Pid) is defined as: 

Pid= Pi + djNp for i=l,2, and 3 (A.I) 

Pu =P, + diNs for i=4 and 5 (A.2) 

Pid = Pi + dtNt for i =6 (A.3) 

Note that in this paper, the workpiece is virtually brought into contact with the fixture 

by using a step-wise process, simplified from that developed by Salisbury and Peters [1]. 

The initial orientation of the workpiece will have the primary, secondary and tertiary planes 

aligned with the z, -x and y axes, respectively. This is shown in Figure A.l. 

The movements to be described in the following sections are not physical but 

simulated. The result of these simulated moves is the same as actually occurs. The 

orientation of the workpiece is represented by two vectors: the normal vectors of the 

workpiece's primary and secondary planes, Np, Ns. The target point, which signifies the 

workpiece location, could be any crucial point in which we desire to know the variability of 

its location after fixturing. The target point could be the reference point of a feature to be 

produced. Throughout this paper, any reference to the primary, secondary and tertiary planes 

will be referred to as those of the workpiece, unless otherwise stated. 
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tertiary plane 

Figure A.l. The initial position and orientation of a workpiece before applying virtual 
movement. 

PRIMARY PLANE 

The displacement of the workpiece as a result of the errors at the primary plane 

locators is determined via a translation and rotation of the workpiece. 

TRANSLATION 

The nominal position of the target point is located by 5 with respect to the fixture 

reference system. The algorithm begins with translating the workpiece up or down along z 

axis until the workpiece makes contact with any one of the three primary plane locators, 

named Pxd. The position of the workpiece is now defined by Eq. (A.4). 
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5 p t = 5 + d i N p  (A4) 

ROTATION 

In the presence of variability in the primary plane, the orientation of the plane is 

slightly different from the nominal direction. Once the workpiece has made contact with all 

three locators in the primary plane, the normal vector of the plane is 

Np = PId^2d x P\dPu (A.5) 

d,Np 

Figure A.2. Translation in the primary plane. 

Since the workpiece is assumed to be a rigid body, the orientation of the other two 

planes can be attained by employing the following transformation matrix. The general form 

of a rotational transformation matrix is: 
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T(<fi,u) = 

uÎY(<P)+C(0) uxu }y(#)-u.S(0) uxu.V{<fi)+uyS(tfi) 

M tuv.K(0) + u_S(0) u;V(<fi) + C(t) uyu.y(0)-uxS(<fi) 

uxu.V(,<{))-uvSi,ip) uyu zV{<l>) + uxStp ulV(<p) + C(.<i>) 

(A .6) 

where <f> = an angle, u = axis of rotation, C(<f>) = cos(^), S(<f>) = sin(^) and = I-

cos($. 

The axis of rotation can be derived from 

u p  =N p xN' p  

The angle of rotation can be found with Eq. (A.8). 

0p =cos-\Np»N'p) 

(A.7) 

(A.8) 

The rotational transformation matrix due to the surface errors in the primary plane is then 

Tp  = T(9p ,up) (A.9) 

The orientation of the secondary and tertiary planes are now deviated to 

K =tp*Ns (A. 10) 

/V; =Tp*N, (A.11) 

The new vector to the target point is found by Eq. (A. 12). The workpiece after these 

transformations is shown in Figure A 3. 

Ô p r = T p * ô p t  (A. 12) 
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Figure A.3. The deviation of workpiece position and orientation due to the surface errors on the 
primary plane locators. 

SECONDARY PLANE 

The errors at the contact points in the secondary plane cause the deviation of the 

workpiece, which can be represented by the transformations developed in the following 

sections. 

TRANSLATION 

The workpiece is translated to make contact with one of the locators of the secondary 

plane, named P4a (Figure A.4). The general equation of the distance, D, from a point Pxy -to 

a plane which is at a distance of 1 from the origin is 

D = \ N X P X  +  N y P y  + M 2 P z  -/| (A. 13) 

where Nx.y-is a normal vector of the plane 
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The distance from the secondary plane of the workpiece to P4d is shown in Eq. 

(A. 14). 

D s  = |N'aP^ + KyPAdy  + N';P4 l t  -/,| (A. 14) 

The unknown at this time is ls, however it is not straightforward to determine its 

value. By definition, ls is the distance from the origin to the deviated secondary plane, along 

the direction normal to the plane. Since the orientation of the deviated secondary plane is 

already given in Eq. (A. 10), the calculation for ls only requires a point on the plane denoting 

the current location of the plane to use in Eq. (A. 16). This point can be obtained by applying 

the transformations caused by the surface errors in the primary plane to any point lying on 

the initial secondary plane. If we look back to the beginning when the workpiece was at its 

nominal location and orientation, the nominal plane was in touch with the locators P4 and Pj. 

Since P4 and Pj were actually lying on the initial secondary plane, either one of them can be 

used to calculate the current location of the plane. We will select P4. As the workpiece 

moves according to the transformations in consequence of the surface errors in the primary 

plane, P4 travels as well in accordance to Eq. (A. 15). By substituting P4t into Eq. (A. 16), we 

are now able to locate the secondary plane relative to the origin of the fixture reference 

system. 

P4r = r ,*(P4 + </,) (A. 15) 

where P4t is the new location of P4 after application of the transformation of the primary 

plane. 
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Figure A.4. Translation of the workpiece to make contact with the first locator on the secondary 
plane. 

The normal distance between the plan on which P4l lies and the origin is 

(A. 16) 

By substituting ls into Eq. (A. 14), we will be able to derive Ds, distance between the 

locator P4d and the secondary plane. In other words, it is the distance that the workpiece will 

be translated to make contact with P4d and the current location of the target point on the 

workpiece is 

° s ,  =0pr  +DSN'S  (A. 17) 

ROTATION 

The workpiece has translated to make contact with P4d, and it now will be rotated 

about P4d to touch Psd completing the contact with the secondary plane. The normal vector 

of the secondary plane after rotation about P4d to P$d is: 
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(A. 18) 

Figure A.5. Rotation about the first contact point of the secondary plane in order to make 
contact with thj second point. 

The axis of rotation can be derived from 

u s  -N ' s y .N"  (A. 19) 

The angle of rotation is found as follows: 

0S =cos"'(iv;.iv;) (A.20) 

The normal vectors of the secondary and tertiary planes can be determined by Eq. (A.21) and 

(A.22). The transformation matrix, Ts, is found by substituting <p = Qs and u = us into Eq. 

(A.8). During this transformation, the orientation of the primary plane will remain 

unchanged since the rotation is made around its current normal vector. 

S f ' = T s *  F f ' s  (A.21) 
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iï; = T s  * N\ (A.22) 

The target point is now located at 

5 s r=T s*5 s ,  (A.23) 

TERTIARY PLANE 

For the final transformation, the workpiece will again be translated: this time it is 

moved toward the tertiary plane to make contact with Pm as shown in Figure A.6. The 

translation distance is obtained from Eq. (A.24). 

D, =\N-aP6dx  + N;.P6dy  + N- r_Pbdz  -I, | (A.24) 

To obtain /„ we will follow the steps of the derivation of ls in the previous section 

except we use Po instead of P4 and the transformation is different as shown in Eq. (A.25). 

Pbt = Ts *((Tp *(P6 +rf,)) + D1) (A.25) 

/,=AT>P6f (A.26) 

The location of the workpiece is now 

5 r =5 i r +D t N; (A.27) 

The final location and orientation of the workpiece is defined by Eq. (A.5), (A. 18) and 

(A.27). 
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dation , m the tenù 'arypi, atie. 



www.manaraa.com

76 

APPENDIX B 

DISTRIBUTION OF FEATURE POSITION 

It is assumed that the workpiece position (and hole position), is multivariate normally 

distributed with 

= [fUpi .  MP2.  MPS]  (B . l )  

Zp — 

A-N ° PV. °"P13 

< °*P23 

°"P31 & PIZ CT;3 

(B.2) 

The contour of a constant density for a multivariate normal distribution with n = 3 is pictured 

like an ellipsoid defined by Eq. (B.3). 

(x -n) 'Y .~ \x- f i )<c 2  (B.3) 

where c2 depends upon the desired volume of the ellipsoid. 

For 95% probability of a bivariate normal distribution, c2 will equal 5.99. The 

elliptical contour is theoretically centered at the mean of the distribution, /a, and its axes are 

governed by the eigenvalues, A, and eigenvectors, e, of the covariance matrix, 1, (Figure 

B.l). The eigenvalues and eigenvectors of Zare defined by 

|E-A/| = 0 (B.4) 

2e=Xe (B.5) 

From Eq.(B.5), the eigenvalues of Ip are 

A = 
(o-p, + <r;2 ) ± V(<T;,-<7;2)2-h4<T;12 

(B.6) 

Eigenvectors that correspond to the above eigenvalues are 
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r(o7, + „ 
v, — l - ,ij ("•') 

*-°*P12 

(<Tp, +a-p 2 ) - -J (ap Z  —o~pi  )' +4cTp,2 mg^ 
v2 =[ ; ,1J (.B-o) 

-°>12 

Once we have the eigenvalues and eigenvectors of the covariance matrix, we are able to draw 

an ellipse, which contains the desired probability and orientation for the distribution. 

i 

Figure B.l. The contour of a bivariate normal distribution 

DISTRIBUTION OF AXIS ORIENTATION 

For the ease of analyzing the distribution of axis orientation, we establish a new 

model similar to the existing one with the workpiece initially being at its nominal location 

and orientation. In the new model, instead of transforming the workpiece, an equivalent 

transformation is implemented to the cutter, which has the same result. Figure B.2 illustrates 

the normal vectors and cutting directions of the actual displaced workpiece, compared to 

those in the new model. In the figure, M are the normal vectors of the workpiece and C, are 
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the cutter directions. Obviously, the axis Cj actually is a reflection of the normal vector N/ 

having A/j or C/ being a centerline. 

M are related to each other by 

N,  = T*N (B.9) 

where T is a transformation matrix. 

Transforming Ni to Ni is based on the fact that the direction of a vector in space is not 

changed by translation but rotation, T is thus simply a rotation matrix. The general form of a 

rotation matrix is shown below. 

T{<f>,u) = 

u;V(<f>) + C(<f>) uxiiyV{<$)-u.S(<f>) iixU;V(</>) + uyS(f) 

u x u y V[<p)  +  u .S($)  u;V(<p)  +  C(<f>)  u y u z V(<t>)  -  u x S(<p)  

uxuyw)-uYS{t) uviiy{<p) + uxs<f> u:V{(P) + C{<t>) 

(B.10) 

where 0= an angle, u = axis of rotation, C(<p) = cos($, S(<p) = sin($ and V(<p) = l-cos(^). 

If Nj = [0, 0, 1] and Ni is given as [Nx, Ny, Nz], then by applying the transformation steps 

from the previous paper we obtain the following. 

u = x Nz 

u = [• N„ -M.  

p ;  + N; . 'p ;  + v ;  
,0] 

(B.l l) 

(B.12) 

and the angle of rotation; 

<f> = cos™1 (N{ »NZ) (B.13) 

<f> - acos{Nz) (B.l4) 

Then we substitute u and <f> into the rotation matrix in Eq. (B.10). Cj is derived from 

transforming C/, which we assume to be [0 0 I], by T. 
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1 1 VM ' ' 
(B.l 5) 

Since A/) is a unit vector, N2
t + Ni + N: = 1 then 

C, = [-ATr, -M, M] (B.l 6) 

Clearly, the mean of Cj is actually the reflection of the mean of Ni and it also can be proved 

that the variance of Cj and Ni are the same. 

Figure B.2. (a) cutting direction when the workpiece is displaced, (b) when the workpiece is 
transformed back to nominal orientation 

We now have the distribution of both the feature position and the axis orientation as 

functions of given distributions of the workpiece location and orientation. This information 

will be combined to establish the positional tolerance of the feature. 

DISTRIBUTION OF PROJECTED POINTS 

Be reminded that the positional tolerance zone of the cylindrical feature is a cylinder 

which must contain the feature's axis. We assume that the distribution of the feature position 

(workpiece position) is known. Because variability in the orientation of the axis exists, the 

N, C, 
N, C, 

(a) (b) 
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projections onto the top and bottom planes of an elliptical cloud representing the variability 

of the feature position along the feature axes will be different in shape from the original 

cloud. The cloud will vary not only due to the erratic orientation of the axes, but also their 

length. To find the positional tolerance, we begin by calculating the top and bottom 

projections. Let zz, be a unit normal vector of the plane through which the feature will be 

machined. 

cutting direction 

Figure B.3. The effect of orientation variability on the projections of the feature position on the 
top and bottom plane of the workpiece 

The equation of the axis in 3-dimensional space, at given p, is 

x-p x  _ y - P l  =  z~P 3  

n. M, n. 
= t (B.17) 

or 

x = Pi + n\l, y = + nzl 

where [nt, /12, nj ] is the direction cosine of the line 

The general equation of the plane is 

ax + by + cz — d 

(B.18) 

(B.19) 
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In case that the plane is oriented parallel to X-Yplane, Eq. (B.19) will become 

z = d (B.20) 

From Eq. (B.l8) and (B.20), the line will intersect the plane at 

(B.21) 

Substituting Eq. (B.21) into Eq. (B.18) results in 

^- ) ,Z=d (B.22) 

where 

d = L when the plane on which the points are projected is the top plane, and [«/, wj ] is the 

direction cosine of the normal vector of the top plane. 

d = 0 when the plane on which the points are projected is the bottom plane, and 

[-zz/,- m,- nj ] is the direction cosine of the normal vector of the bottom plane. 

Let's call the projections of the points representing the feature position on the top and 

bottom planes of the workpiece, "/I." 

Linearizing Eq. (B.22) around /v, gives 

A -  N(f i A ,F([ j . )Y . a  (B.23) 
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where A = 

X 

Y 

Z 

» = 

M si 
d ~M pi x 
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D 
Ms 3 

.T = 
S, 

".VP 

•p.v 

£.v 

and 

f(^) = 

av(A) CvV(/v) 
1 0 

°Mp\  CM* 3 
SY(u)  £ H f )  

0 1 °Mp\  c Ms 3 1 
5Z{n)  cZ( f i )  

0 0 
CMpi  CM ,V3 . 

/*.Vl /^P3 
y".v3 

~Msz  
Ms 3 

0 

( 

0 

0 

) 

( 

0 

d- uc 

u v .  
- )  ~  

Ms\  [d  M pi  )  

mIi 
Mxz (d — p3 ) (B.24) 

Sangnui and Peters quantified the variation in location and orientation of a fixtured 

workpiece. This work uses this variation as input to determine the variation of a machined 

feature created on that fixtured workpiece. We will use Eq. (B.23) to accomplish this goal. 

The feature is to be machined normal to the plane, and the mean of the plane's normal vector, 

and hps with — into Eq. (B.24), and we obtain 
>A'I " 0 ' Ms i " '0 

M si , is 0 . Substitute Msi  with 0 

_^3. 1 _Msi  . 1 

1 0 0 

0 1 0 

0 0 0 

2d-L 

2 

0 

0 

0 0 

2d - L „ 
2 
0 

(B.25) 

Results from Chapter 2 also indicated the insignificant role of I^p and In compared to Sp, 

leading to 
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0 

S a (B.26) 

0 0 

From Eq. (B.23), we know that Z.A = F(/*)20f"(^). 

(B.21) 

0 0 0 

The information we have so far points out to the following conclusions. 

1. Regarding Eq. (B.27), the third component of the feature position is dropped down 

leaving the distribution of A as the projection of the feature position distribution on the X-Y 

plane. 

2. The previous chapter indicates negligible variability in the workpiece orientation 

resulting in the projections on both top and bottom plane being the same. However, when the 

workpiece thickness, L, becomes very large (a rare event), this conclusion may not be valid. 

Therefore, we can assume both projections share the same properties only when the axis 

orientation variability has a slight role and L is not extremely great in size. 

3. Based on the assumption that the feature position is distributed as multivariate normal 

and on the property of such distributions that all subsets of the components have a 

(multivariate) normal distribution, A is also (multivariate) normally distributed with an 

elliptical distribution contour. 
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